
Beyond Valuation: Past, Present and Future
of Domain Specific Languages for Finance

Applications: Ten Years of DSL Development,
Client Interaction, and Market Feedback at

LexiFi

Jean-Marc Eber

LexiFi, www.lexifi.com

DSLFIN: Domain-Specific Languages for Financial Systems
ACM/IEEE 16th International Conference on Model Driven

Engineering Languages and Systems
October 1st, 2013, Miami Beach

Main Driver for Founding LexiFi

Question:

Has the financial industry adopted a method for
rigorously describing financial contracts in a computer
system?

Response:

No!

Therefore:

Need for a semantically well founded and
mechanizable description approach.

The AIG bonus affair

“AIGFP’s books also contain a significant number of
complex—so-called bespoke —transactions that are
difficult to understand and manage. This is one reason
replacing key traders and risk managers would not be
practical on a large scale. Personal knowledge of the trades
and the unique systems at AIGFP will be critical to an
effective unwind of AIGFP’s businesses and portfolios. [. . .]
To the extent that AIGFP were to lose traders who currently
oversee complicated though familiar positions and know
how to hedge the book, gaps in hedging could result in
significant losses. [. . .] Quite frankly, AIG’s hands are tied.”

From a letter dated 14 March 2009 by Edward Liddy, Chairman and CEO of AIG to Timothy Geithner, U.S. Secretary
of the Treasury, regarding compensation at AIG Financial Products.

A language for describing derivatives?

“One of the challenges that we need to address [. . .]
is to have a common language to describe derivatives.
Every firm uses a different set of terminologies, a
different set of representations to describe their
derivatives portfolios.”

Kenneth Griffin, Founder and CEO, Citadel Investment Group, testifying before the U.S. House Committee on
Oversight and Government Reform on November 13, 2008.

Industry Practice

• Contracts are often complex: rights and obligations
depend heavily on preceding choices and realizations

• Biggest profit margin in the “tailored product” segment
• Contracts often last for a long time (e.g., 3, 5, 10 years)
• Different treatments must be performed on contracts

(valuation, risk analysis, operational management,
reporting,...), from inception to maturity

• A financial institution has hundreds or thousands of these
contracts on its books, managed by a small group of
people (Excel, PDF, post-its,...)

• Computer programs at financial institutions either ignore
the "semantics" of contracts (they only record a few salient
features) or require heavy error-prone developments for
each structure and for each treatment

Term sheets

Term Sheets are informal contract specifications. They contain
at least one error (Fundamental Axiom of Financial
Engineering), as they typically
• are incomplete
• lack precision
• are contradictory
• contain implicit rules

Business concerns
Financial institutions look for systems that enable them to
design, price and process heterogeneous financial products in
a framework that scales while containing risks and costs.
• Automation of the full product life cycle, from prototyping to

maturity
• Includes contract documentation, automatic ratings, term

sheets generation,...
• Agreement on contract: adequacy, quality, and accuracy

• contracts must be executed precisely between two parties
• kind of “handshaking protocol”

• Contracts must be hedged, their risk profile must be
analyzed, etc.: the valuation problem is crucial

• For some applications, well chosen contract
approximations (simplifications) can be used

• Oversight: financial industry is (and will be more and more)
regulated

The challenge

Create a product definition that can be read by a human being
and processed by a computer, and that satisfies three goals:
• Describe the rights and obligations of the parties both

precisely and exhaustively
• Contains therefore all semantics of the contract
• Lend itself to manipulations of various sorts, for example,

for the purpose of pricing the contract and evaluating credit
risk, or managing its clauses automatically

• Reflect the evolution of the contract through time

Domain Specific Language (DSL)

DSL: Contract Algebra

Heterogeneity of contracts: the contract description
• should be compositional

• conceptual simplicity (semantics, “traversal” algorithms)
• software engineering reuse argument (library design)

• should be a value, which cannot only be analyzed but also
modified and transformed

Syntax is minor, it’s all about semantics!

Example

1 l e t c =
2 acqu i re {[2010−01−02]}
3 (e i t h e r
4 [" exerc ise " , f l ow 2010−01−10 EUR ((market "XYZ" −.~

3500.~)) ;
5 " abandon " , zero]
6)

on 2010-01-02, holder can choose between
• receiving on 2010-01-10 a flow, in EUR, equal to the

quotation of stock XYZ on this same date minus 3500, or
• nothing

A (cash-settled, for simplicity) call with discretionary exercise
decision

Previous definition

• No reference to any pricing model
• No mathematical notions
• No reference to any max operator

• even if most pricing algorithms will (explicitly or implicitly)
“use” a max

• but one could be interested in a sub-optimal pricing in some
circumstances

• pricing scripts do not distinguish discretionary and
“automatic” exercise

• Self-contained contract logic description

Semantics
Knowing the meaning of the operators (acquire, either,
. . .), we deduce “how the contract works”.

Analogy between contracts and algebraic expressions

”acquire {[2010-01-02]} (either [. . .])”

acquire [2010-01-02]

either

flow 2010-01-10 EUR

-

market "XYZ" 3500.

zero

”x + (12 ∗ y)”

+

x *

12 y

Informal description of some combinators (simplified)

acquire date -> contract -> contract
Acquiring acquire t c means that you must acquire c at
future date t

all contract list -> contract
Acquiring all cs means that you acquire immediately all
contracts in cs

either (string * contract) list -> contract
Acquiring either cs means that you must acquire
immediately one contract in cs

flow date -> currency -> observable -> contract
Acquiring flow t cur o means to receive at t the value at t
of observable o

give contract -> contract
Acquiring give c is to acquire all of c’s rights as obligations,
and vice versa

Technical Choices at LexiFi

• LexiFi puts great emphasis on controlling fully its
implementation stack and remaining platform independent

• Critical for ambitious integration projects
• LexiFi’s DSL runs (on client sites) on Windows desktops, on

Windows servers, deployed on many Linux servers in big
datacenters, etc. Even in the browser (internal
experiments)!

• Most of our code is implemented in MLFi, a general
purpose functional programming language derived from
OCaml

• Many of the recent advances in OCaml originated from or
were funded by LexiFi

• MLFi is used both a the host language for our contract DSL,
but also for numerical code, general application
development, etc. (Relying on FFI with C and with .Net
where needed)

2-staged approach
• The DSL itself is made of contract and observable

combinators
• Combinators enforce invariants and provide a clean API

above the highly-optimized internal representation of DSL
terms

• Restricted expressive power to support rich reasoning,
precise analysis and powerful compilation techniques

• The host language (OCaml + extensions) is used to
implement instruments, i.e. mapping from user-facing
parameters to contracts

• Full expressivity of the language. In theory, any host
language would do the job, but a high-level functional
language turns out to be a perfect match for implementing
and using the DSL

• We have developped a library of reusable instrument
building blocks, using a “mixin” style

• The instrument code also specifies properties not stricly
related to the contract itself: customized GUI layout or
behavior, choice of a default pricing model, hints about
specific pricing tricks, etc.

Contract Parameters

Possible contract rewriting (simplification) rules

. . .

all[zero; c2; . . . ; cn] → all[c2; . . . ; cn]

give(give c) → c

acquire t1 (acquire t2 c) → acquire t2 c if t1 ≤ t2
→ ′′error ′′ otherwise

. . .

what set of equational rules to apply?
applicable set depends on uses (middle office, pricing, . . .)

Reasoning on contract definitions: collecting future
cash flows

Similarly, we can write (and implement!) the equations for
retrieving a description of the future cash flows of a contract

• Depending on our practical needs, we define a more or
less precise semantics

Future flows
Annotated list of future cash flows

Future cash flows with uncertainty flag

q
c
y

=
q
false, c

y+
f

q
p, flow t cur o

y+
f = [(+,p, t , cur ,o)]q

p, flow t cur o
y−

f = [(−,p, t , cur ,o)]

q
p,either [(s1, c1); . . . ; (sn, cn)]

y+
f = ∪n

i=1
q
true, ci

y+
fq

p,either [(s1, c1); . . . ; (sn, cn)]
y−

f = ∪n
i=1

q
true, ci

y−
f

q
p,give(c)

y+
f =

q
p, c

y−
fq

p,give(c)
y−

f =
q
p, c

y+
f

Calendar of a contract

Detect all meaningful events that will or may happen in the
future
• Similar (but more complex!) as defining the list of all

unknowns in our algebraic expression example
• recursive traversal of the syntax tree, collecting all the

unknowns

• Compositional analysis of the syntax tree of the contract
description

Contract Internal Representation

Contract Calendar

Managing a contract: operational semantics

Apply external events (fixings, exercise decisions,...) to the
contract. Analogy: resolve an unknown and get a “simpler”
expression

+

x *

12 y

y = 2
=⇒

+

x 24

Fix an unknown observable

1 l e t c = manage c (Mgt_ f i x ings [{
2 f i x _ d a t e = 2010−01−10;
3 f i x _ i d e n t i f i e r = "XYZ" ;
4 f i x _ v a l u e = Obs_f loat 3 6 5 0 . }])
5 . . .
6 acqu i re {[2010−01−02]}
7 (e i t h e r
8 [(" abandon " , zero) ;
9 (" exerc ise " , s imple_f low 2010−01−10 EUR 150.~)])

The resulting contract is “simplified”!

Symbolic contract manipulations

Inspection and transformation of contract descriptions has
many more interesting applications:
• Decompose a contract into its “bond” and “option” part
• Symbolic netting or approximate netting
• Automatic payoff diagram generation
• Contract debugger
• Calculate (forthcoming) “regulatory” risk indicators
• . . .

Graphical Contract Simulator

Pricing code generation

Valuation is never fast enough as it implies resource hungry
numerical calculations (Monte Carlo methods, Partial
Differential Equations)
• Run-time code generation of the contract specific payoff

part
• Clever caching approach
• Generate code from a “current contract state”

• by design “in sync” with operational (management)
semantics

• generated code executes a succession of calculation steps,
calling model specific primitives

• usual compilation techniques and optimizations
• domain specific optimizations

Functional Programming Techniques at LexiFi

Maybe one of the less exotic use of functional programming in
the industry!
No fancy web or cloud programming, computer graphics,
hardware design, big data, etc. Just a domain specific
language, with
• static analysis (to report possible future events)
• rewriting and simplification (to incorporate past events)
• interpretation and compilation (to produce efficient

low-level pricing code linked with numerical models)
• run-time type representations (to generate a GUI

automatically from types)

LexiFi Milestones
• 1995-2000: first ideas, design, technical choices (functional language, combinator library,...)
• 2000: paper: “Composing Contracts: An Adventure in Financial Engineering” (with Simon Peyton Jones and

Julian Seward)
• 2001: LexiFi founded, first implementation
• 2002: switch from 100% proprietary compiler to embedding a combinator algebra into a modified OCaml

compiler: MLFi
• 2003: first Technology Client
• 2005: LexiFi Apropos, “end user” application (with automatic GUI generation technology) built on top of the

technology
• 2006: LexiFi’s DSL powers the XpressInstruments module in SimCorp Dimension (first OEM client,

collaboration continues today!)
• 2007: first client with “real” end-users (no programmers!)
• 2008: LexiFi Apropos embeds a powerful IDE (also integrated in SimCorp Dimension)
• 2009: “LexiFi Apropos for Private Banks”, a special edition automating most business processes of

structured products desks (including client-facing documents)
• 2010: first European private bank to adopt LexiFi Apropos
• 2011: the Do-It-Yourself instrument gives most of the DSL flexibility in a GUI; end-users can implement ad

hoc structures without programming
• 2012: private banks across Europe (Swiss, Luxembourg, Belgium, UK) adopt LexiFi Apropos
• 2012: switch from native pricing code generation to targeting a highly optimized Monte Carlo Virtual

Machine
• 2013: a major French Asset Manager uses LexiFi to manage and price 99% of its entire book (allowing

them to meet the new EMIR EU regulation)
• 2013: LexiFi’s DSL integrated into a major US information/service provider
• 2014: switch from native pricing code generation to a Partial Differential Equation Solver Virtual Machine
• 2014?: Algebra3: enhanced Contract Combinators
• 2014,2015?: cloud enabled SaaS offer

Algebra3 project

A more end-user friendly combinator set
• Consolidates more than 10 years of experience;

streamlines both the user-facing API and the internal
implementation techniques

• Feedback from our OEM customers and advanced
end-users on how to make the DSL more accessible to
beginner instrument developers

• Give an imperative flavor
• Drop the “point-free” approach for observables (=

processes) in favor of a more standard style
• More flexible for date calculations within the DSL itself
• Enlarge the set of contracts that may be described

Lessons learned from Marketing and Sales

• It is very difficult to sell a
language/framework/IDE/Workbench/. . . without being able
to show an end-user product

• Only “early adopters” will do, and they are very rare
• Once such an end-user product is available, you may/will

sell technology alone
• Some features are necessary for a demo, but never used

in production
• 95% of prospects aren’t interested in DSLs or technical

excellence, but only “features”
• Even if technical excellence will allow you to serve them

better in the future, as you explain them
• 90% of clients will not use the product as you thought they

would
• Client interaction/feedback/visits is essential

Regulator and Executable Specification: the SEC and
the Python

The SEC put out in April 2010 a 667 page proposal regarding
disclosures for asset backed securities:

“We are proposing to require that most ABS issuers file a computer program that gives effect to the
flow of funds, or “waterfall,” provisions of the transaction, [...] that the computer program be filed in
the form of downloadable source code in Python.” (page 205)
“[...] the filed source code, when downloaded and run by an investor, must provide the user with the
ability to programmatically input the user’s own assumptions regarding the future performance and
cash flows from the pool assets, including but not limited to assumptions about future interest rates,
default rates, prepayment speeds, loss-given-default rates, and any other necessary assumptions”
(page 210)

• technology as a key regulatory tool
• many comments about language choice, availability,

absence of formal semantics of Python and floating point
arithmetic etc.

Recent perceived evolution

• As the AIG episode demonstrates, agents in financial
institutions who are “in the know” have little incentive to
implement systems that clarify exposures or imply a rapid
transfer of knowledge;

• over the past decade, agents, shareholders, or regulators
have not demonstrated a will to fundamentally improve the
way financial contracts are described by the financial
industry;

• a political momentum exists today to improve the market
transparency, the market infrastructure, and the firm-level
management of OTC derivatives.

Standardization
adoption of a common language for describing financial
contracts

Conclusion

We argue that only a combination of

• a rigorous finance theory
• a strong numerical implementation
• a clever symbolic contract manipulation framework

can solve in a coherent and scalable way the huge problems
encountered in the structured products space.

